
IT 21 008

Examensarbete 30 hp
Januari 2021

Homotopy Type Theory and Constraint
Programming

Samuel Grahn

Institutionen för informationsteknologi
Department of Information Technology

1

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

Homotopy Type Theory and Constraint Programming

Samuel Grahn

An important question that arises when reasoning about constraint satisfaction
problems or constraint programming models thereof, is the issue of equivalence. In
order to prove such equivalences between constraint programming models, we
formalise a subset of the MiniZinc constraint programming language in Homotopy
Type Theory, through the use of the Cubical Agda library.

Homotopy Type Theory is a new area of mathematical logic, that allows for a simpler
translation between objects and propositions, something we can use to model
constraints. The univalence axiom states that given an isomorphism between types,
there is an equality of types as well. This means that it suffices to prove two types are
isomorphic in order to prove their equality, something which allows for less involved
proofs and simpler representations of objects.

The formalisation yields a new framework for reasoning about constraint
programming, which we use to reason about implied constraints and symmetry
breaking constraints. Further, we introduce two different models of the N-queens
problem, and prove that they are equivalent.

Through the link between the database query language SQL and constraint
programming, we discuss possible avenues to use this formalisation to create an
algebraic structure representing constraint models.

Tryckt av: Reprocentralen ITC
IT 21 008
Examinator: Mats Daniels
Ämnesgranskare: Lars-Henrik Eriksson
Handledare: Justin Pearson

1

𝐂𝐨𝐧𝐭𝐞𝐧𝐭𝐬

1 𝐈𝐧𝐭𝐫𝐨𝐝𝐮𝐜𝐭𝐢𝐨𝐧 3

2 𝐓𝐲𝐩𝐞 𝐓𝐡𝐞𝐨𝐫𝐲 6
2.1 Agda . 6
2.2 Introducing Types . 7
2.3 Function Types . 7
2.4 Universes . 8
2.5 Defining Types . 8
2.6 Unit Type . 9
2.7 Universe Lifting . 10
2.8 Product Types . 11
2.9 Families . 11
2.10 Dependent Functions . 11
2.11 Dependent Product . 12
2.12 Propositions . 12
2.13 Empty Type . 13
2.14 Equality Types . 14
2.15 Type Equivalence . 15
2.16 Univalence . 16
2.17 Intensional and Extensional Equalities 17
2.18 Function Extensionality . 17
2.19 Mere Propositions . 18
2.20 Decidability . 19

3 𝐂𝐨𝐧𝐬𝐭𝐫𝐚𝐢𝐧𝐭 𝐏𝐫𝐨𝐠𝐫𝐚𝐦𝐦𝐢𝐧𝐠 21
3.1 Data Types . 21
3.2 Constraints . 23
3.3 Models . 23
3.4 Decidable Constraints in Models 24
3.5 Global Constraints . 25

1

4 𝐌𝐨𝐝𝐞𝐥 𝐑𝐞𝐚𝐬𝐨𝐧𝐢𝐧𝐠 31
4.1 N-Queens . 31
4.2 Symmetry Breaking . 34
4.3 Implied Constraints . 36

5 𝐂𝐨𝐧𝐜𝐥𝐮𝐬𝐢𝐨𝐧 39
5.1 Results . 39
5.2 Related Work . 40
5.3 Future Work . 40
5.4 Analysis . 41

2

𝐂𝐡𝐚𝐩𝐭𝐞𝐫 1

𝐈𝐧𝐭𝐫𝐨𝐝𝐮𝐜𝐭𝐢𝐨𝐧

When studying computationally hard problems, solving them somewhat efficiently
often reduces to exploring the space of all possible solutions. The size of such a
space — in the case of NP-hard problems — often scale exponentially with input
size. Constraint programming is an approach to combinatorial problem solving
that aims to provide an easy way to search for these solutions. The field of con-
straint programming has been evolving rapidly since its inception. New solver
techniques and faster implementations, as well as use cases in many fields, includ-
ing biology, electric engineering, numerical analysis, etc [2].

Constraint programming separates any given problem into two parts: model-
ing and solving. Modeling a problem consists of declaring some set of variables,
and through some language — usually a subset of first-order logic — express the
constraints; properties of the variables. Once a model has been defined, it can
be plugged into a constraint solver; a program that explores the search space in
some clever way, until it finds a solution, or finds that there cannot exist a solu-
tion[2]. It is particularly effective at solving problems that intuitively translate to
— or are initially defined by — restrictions, or rules, that the solution must satisfy.
For instance, puzzles like Sudoku, where a number can only occur once in each
row, column and subsquare, allow for a simple modeling step. Another problem,
perhaps the most famous puzzle in terms of constraint programming examples is
the n-queens puzzle, which consists of placing 𝑛 queens on a n-by-n chess board,
without any one queen threatening another.

Mathematically, problems expressed using these methods are referred to as
constraint satisfaction problems. Formally, they are defined as triples (𝑋, 𝐷, 𝐶)
where 𝑋 is a set of variables, 𝐷 is a set of domains; one for each variable, and 𝐶
is a set of constraints on the allowed combinations of values of the variables in 𝑋.
Each domain 𝐷𝑖 specifies a set of values that 𝑋𝑖 is allowed to take. Each constraint
specifies a relation on a subset of the variables of 𝑋[11].

However, as is often the case when examining subjects from a purely math-

3

ematical standpoint, the question of isomorphisms, equivalences and other types
of equalities are raised. The idea is that if we can manage to prove equalities be-
tween models, it will be easier to reason about transformations between models,
and knowing that certain common rewriting techniques do not change the model.

There have been some prior research into this question, and one method that
has arisen as somewhat efficient previously is using a theorem prover to prove
equalities between models[4]. Theorem provers are often based on type theory;
a form of logic that encompasses data types, which allows for encoding of math-
ematical statements, and proofs thereof, in a computationally verifiable system.
The theorem prover which will be used in this thesis is Agda, which behaves and
looks similar to the functional programming language Haskell. What differenti-
ates Agda from other functional programming languages is that it is dependently
typed; meaning types can be defined not only using other types, but also using
elements of other types. This is important, because dependent types allows for the
formulation of logical quantifiers in the interpretation of propositions as types[7],
which we will discuss in section 2.12

When working with mathematical structures, it is often considered sufficient
to show isomorphisms between objects, and then for all intents and purposes con-
sider them the same. This becomes a problem when formalizing, since they are
not in fact equal. This is a problem that Homotopy Type Theory (HoTT) attempts
to solve through the axiom of univalence, regarding types as spaces, and equalities
as paths between points in the space[12]. This way, should we be able to prove
that two types 𝐴 and 𝐵 are equivalent, and that type 𝐴 exhibits a property 𝑃 (𝐴),
we can transport the proof of 𝑃 (𝐴) along the equality 𝐴 ≡ 𝐵, and arrive at a proof
of 𝑃 (𝐵). This path notion stems from homotopy theory; a subset of topology that
focuses on the properties that are homotopy transferable[12]. The development
of HoTT has yielded successful results in many areas of mathematics through this
notion of homotopy equivalence.

The notion of equalities we are looking for are known as extensional, which
means objects are equal if they are indistinguishable from each other; in other
words, when they share the same external properties. This is in contrast to the
more classical notion of equality of being defined the same way — which is known
as intensional equality. As HoTT is an extensional type theory, the idea is that if
we can manage to formalise models in a way that we cannot distinguish them, we
will have an equality of models.

4

The goal of this thesis is to examine whether we can use HoTT to effectively
prove model equivalences. If two models have the same solutions, or the solutions
to them are equivalent, there is no way to differentiate the models themselves.
This allows us to reason about equality between models without them necessarily
being definitionally equal. We can consider them as homotopic spaces, which
this thesis attempts to formalise using the theorem prover Agda. We will describe
the inner workings of HoTT through the lens of the cubical library for the Agda
programming language, which is based on Cubical Type Theory (CTT). CTT is
a constructive approach to HoTT[6], something we will discuss in section 2.16.
We will assume a basic familiarity with Zermelo-Frankel set theory (ZFC), as this
helps draw parallels to clarify concepts which might otherwise be unclear.

The first step is to choose a constraint programming language to model in
Agda. We will be using a subset of the MiniZinc constraint modeling language.
MiniZinc was created as an attempt at creating a standardized modeling language,
and allows for solving the same model in many different solvers[9].

The data types we will consider are the natural numbers, ranges (consecutive
subsets of the natural numbers, for instance 3..5 corresponds to the set {3, 4, 5}),
and arrays with a fixed length.

Since in HoTT, propositions are types, the constraints will be represented as
variables of the type representing the proposition.

We will represent each model as a record type; a language construct of Agda
which appear similar to structs from C-like languages, but with a type theoretical
background which will be explained in section 2.5.

The model record will contain fields for variables and constraints, each of
which will need to be defined to create an element of the model — a solution. In
other words, in a solution to the model, the variables have been assigned a value,
and the constraints have been proven to hold with the values of the variables.

Using this framework for defining models, we will construct two different
models of the n-queens puzzle, and prove that they are equivalent.

5

𝐂𝐡𝐚𝐩𝐭𝐞𝐫 2

𝐓𝐲𝐩𝐞 𝐓𝐡𝐞𝐨𝐫𝐲

Usually, when formalising mathematics, one would use set theory along with first
order logic. However, that is not the only way to do it. Other formalisation methods
notably include Category Theory, and Type Theory. There are many forms of Type
Theory, with different axiomatizations and syntax, but for this thesis we will be
using HoTT, which is an extension of Martin-Löf Type Theory (MLTT) through
the addition of the Univalence Axiom.

In MLTT, there are types, and their elements. While the elements in set theory
can exist without the context of a set containing it, the elements of types in MLTT
are bound to its corresponding type. In order to have an element 𝑎, we must have
that 𝑎 ∶ 𝑇 , for some type 𝑇 , which is read as a is an element of type T. A compar-
ison can be made to the set theoretic formulation of the same claim, which is a is
an element, and a is in T [12].

2.1 𝐀𝐠𝐝𝐚
In order to check the correctness of proofs, we will use a proof assistant. The
syntax of Agda closely resembles the syntax of both MLTT and the programming
language Haskell. For instance, should we want to declare that we have a natural
number with a value of 5, we would write.

example1 : ℕ
example1 = 5

First, we state that example1 is of type ℕ, and on the second line that its value
is 5. Note that Agda allows for the use of unicode index-subscripts in the names of
the identifiers. Agda allows any unicode character, excluding spaces, to be used
in the names of identifiers.

6

While the natural numbers are built into Agda, and defined through the Peano
axioms, the standard library of Agda is not sufficient for our needs as it does not
encode HoTT. Instead, we will be using the cubical library [1] which implements
CTT[6]. The difference between these type theories will be presented throughout
chapter section 2.14 and section 2.16.

2.2 𝐈𝐧𝐭𝐫𝐨𝐝𝐮𝐜𝐢𝐧𝐠 𝐓𝐲𝐩𝐞𝐬
When introducing a type in MLTT, one provides a number of properties[12].

1. 𝐅𝐨𝐫𝐦𝐚𝐭𝐢𝐨𝐧 𝐑𝐮𝐥𝐞𝐬: How to form new types of this kind.

2. 𝐂𝐨𝐧𝐬𝐭𝐫𝐮𝐜𝐭𝐨𝐫𝐬: Rules for how to construct an element of the type.

3. 𝐄𝐥𝐢𝐦𝐢𝐧𝐚𝐭𝐨𝐫𝐬: How to use elements of the type.

4. 𝐂𝐨𝐦𝐩𝐮𝐭𝐚𝐭𝐢𝐨𝐧 𝐑𝐮𝐥𝐞: How eliminators act on constructors.
Often these requirements are automatically handled for us through Agda, but

sometimes we will need to explicitly declare instances for these rules ourselves.
Some examples will be presented throughout the rest of this chapter.

2.3 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 𝐓𝐲𝐩𝐞𝐬
Functions behave similarly to the functions of set theory, albeit defined differently.
In set theory, a function from 𝐴 to 𝐵 is a subset 𝑓 ⊆ 𝐴 × 𝐵 such that for every pair
(𝑥, 𝑦), (𝑥, 𝑧) in 𝑓 , we have that 𝑦 = 𝑧, where we denote (𝑥, 𝑦) ∈ 𝑓 by 𝑓(𝑥) = 𝑦;
that a function only has one value for any given input[12].

In type theory, however, they are defined more closely to their use; returning
an output for any given input. The formation rules for function types says that if
𝐴 is a type, and if 𝐵 is a type, there is a function type 𝐴 → 𝐵. The constructor
for the function type is the lambda abstraction; given a type signature 𝐴 → 𝐵, the
expression 𝜆𝑥 → 𝜑 represents a function that, when given an 𝑎 ∶ 𝐴, substitutes 𝑎
for every free occurrence of 𝑥 in 𝜑[12].

The eliminator of the function type is function application. Given a function
𝐴 → 𝐵, we can apply the function with a value 𝑎 ∶ 𝐴, to receive a 𝑏 ∶ 𝐵.
The computation rule for function types states that (𝜆𝑥 → 𝜑)(𝑎) is equal to the
substitution of 𝑎 for every free occurrence of 𝑥 in 𝜑[12].

In Agda, we can declare a function by stating that it is an element of a function
type

fact : ℕ → ℕ

7

Now we have declared a function named fact, from ℕ to ℕ, which means that
given an a : ℕ, the function will provide a b : ℕ. However, when we postulate the
existence of such a function, Agda will notify us that we also need to define it.

fact 0 = 1
fact (suc n) = (fact n) * (suc n)

Here, we pattern match on the Peano implementation used for the natural numbers,
where a natural number is either 0 or the successor (suc) to a natural number[12].

2.4 𝐔𝐧𝐢𝐯𝐞𝐫𝐬𝐞𝐬
Since each element must have a type, and we want a way to reason about higher
types, types with types as elements, we introduce the concept of Universes. A
Universe is a type whose elements are also types. Further, as in set theory, an
equivalent statement to Russels’ Paradox1 can be constructed in naive type theory,
which we solve in the same way; by introducing universe levels. Each universe is
contained in a larger universe, giving an infinite hierarchy of universes. We give
each universe a level ℓ, and denote the universe with Type ℓ[12]. The universes
are cumulative, meaning Type ℓ : Type (ℓ-suc ℓ), and for every A : Type ℓ we
have a corresponding B : ℓ-suc ℓ, which will be formalised in section 2.7.

In order to simplify declaring types, Agda allows the use of private variables.
This means that, as an example, whenever we use the variable m, defined below,
Agda knows it is of type ℕ unless otherwise specified.

private
variable

m n k : ℕ
ℓ ℓ’ ℓ” : Level
A B C : Type ℓ

When a type does not depend on any other types, as is the case for the natural
numbers, one usually declares it as a member of the type with level zero. There is
a shorthand for this in Agda, namely Type0, which is equivalent to Type ℓ-zero.

2.5 𝐃𝐞𝐟𝐢𝐧𝐢𝐧𝐠 𝐓𝐲𝐩𝐞𝐬
Types can be defined in many ways in Agda. For instance, one can write

1Russels’ paradox defines a set 𝑅 = {𝑥 ∶ 𝑥 ∉ 𝑥}, the set of all sets not containing themselves.
If 𝑅 ∈ 𝑅, then it contradicts the definition that it does not contain itself, while if 𝑅 ∉ 𝑅, then 𝑅 is
a set that does not contain itself, and should be a member of 𝑅.[12]

8

ℕfunc : Type0
ℕfunc = ℕ → ℕ
which declares ℕfunc as a synonym for the type ℕ → ℕ. Another way to define
types is using the data keyword.
data Maybe (A : Type ℓ) : Type ℓ where

Nothing : Maybe A
Just : A → Maybe A

The formation rules are automatically based on the parameters of the type, i.e.
the type 𝐴, and states that for any 𝐴, there is a type Maybe A. The constructors,
Nothing and Just, state how to construct elements of this type. The elimination rule
for this type is pattern matching, and the computation rule states that a constructor
applied with equal elements produce equal elements in the type.

A third way to define types is using the record syntax.
record FunctionRecord (A : Type ℓ) (B : Type ℓ) : Type (ℓ-suc ℓ) where

constructor _F_
field

f : A → B
g : B → A

First, using the constructor declaration, any appearance of A F B is equivalent to
FunctionRecord A B, along with some additional definitions
data FunctionData

(A : Type ℓ) (B : Type ℓ’)
: Type (ℓ-suc (ℓ-max ℓ ℓ’)) where
F : (A → B) → (B → A) → FunctionData A B

FunctionData∙f : (FunctionData A B) → (A → B)
FunctionData∙f (f F _) = f
FunctionData∙g : FunctionData A B → (B → A)
FunctionData∙g (_ F g) = g
Note that all of the above ways of defining types are interchangeable. Thus, we
will use whichever is most readable in any given situation.

2.6 𝐔𝐧𝐢𝐭 𝐓𝐲𝐩𝐞
The unit type is a type with a single element. The formation rules is that there
is just one type of this kind, and the only constructor is tt. The unit type has no
eliminators, and thus no computation rule[12]. We define it as

9

data Unit𝑥 : Type0 where
tt : Unit𝑥

Note the index subscript 𝑥 in the above definition. Whenever we define a type
already present in the Cubical library, we use this subscript to avoid the name
collision caused by defining the same type twice, but still be able to repeat it for
clarity.

2.7 𝐔𝐧𝐢𝐯𝐞𝐫𝐬𝐞 𝐋𝐢𝐟𝐭𝐢𝐧𝐠
Since the universes are cumulative, for any type A : Type ℓ there is a type Lift B :
Type (ℓ-suc ℓ) that is equivalent to A. In Agda this operation of lifting to a higher
universe is represented by the Lift type, defined as

record Lift𝑥 {i j} (A : Type i) : Type (ℓ-max i j) where
constructor lift
field

lower : A

where i and j are the universe levels in question. Note that they are surrounded by
curly braces, which means they are implicit parameters. An implicit parameter is
automatically inferred by Agda compiler at compile time. When such an inference
is not possible, we may opt to manually supply the argument by writing {i = ℓ}
when applying the function, if we want i to take the value ℓ.

Note that when using this definition, if i is a higher level than j, Lift does not
actually lift, and instead returns a type of the same universe level as the input type.
This is because the cumulativity of the universes ensures every type can be lifted,
they cannot neccessarily be lowered.

We use this universe lifting to represent a unit type in any given universe, which
we define as

Unit*𝑥 : {ℓ : Level} → Type ℓ
Unit*𝑥 = Lift Unit

pattern tt*𝑥 = lift tt

In this application of Lift, note that the implicit parameters which are automatically
inferred have been assigned values. Namely, i is automatically infered to have the
value ℓ-zero, since that is the level of the type Unit. Meanwhile, the value of j is
inferred to be the value of the output level ℓ, which itself is a type parameter, and
will be inferred whenever the Unit* type is used.

Moreover, note the pattern keyword, which defines a pattern synonym, causing
the agda compiler to treat the identifier tt*𝑥 as lift tt.

10

2.8 𝐏𝐫𝐨𝐝𝐮𝐜𝐭 𝐓𝐲𝐩𝐞𝐬
Given two types, 𝐴 and 𝐵, we can construct the type 𝐴×𝐵 of pairs. The constructor
for product types is the _,_ operator which has type A → B → (A × B), i.e. takes
a value of type 𝐴, and a value of type 𝐵, and gives us a value of type 𝐴 × 𝐵.

record _×𝑥_ (A : Type ℓ) (B : Type ℓ’) : Type (ℓ-max ℓ ℓ’) where
field

fst : A
snd : B

The eliminators for the product type are the two projection functions; fst and snd,
which yields the first and second element of a pair, respectively. Finally, we have
the computation rule, which states that given x : A × B, we have x ≡ (fst x , snd
x).

The rules are usually implicitly defined in Agda, so we will not be explicitly
mentioning the formation- and elimination rules in the future, but it is good to have
an idea of the basic principles for defining types.

2.9 𝐅𝐚𝐦𝐢𝐥𝐢𝐞𝐬
Families are defined the same way as they are in set theory. A Type Family is a
function from a type to a universe. As an example we will provide a family defined
on the natural numbers

finFamily : ℕ → Type ℓ-zero
finFamily n = Fin n

When provided a natural number 𝑛 as an argument, the function provides a type
with exactly 𝑛 elements.

2.10 𝐃𝐞𝐩𝐞𝐧𝐝𝐞𝐧𝐭 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧𝐬
A dependent function is a function whose output type depends on the value of its
input. Given a type 𝐴 and a family B : A → Type ℓ, we can create the dependent
function type Π𝑥∶𝐴𝐵𝑥. However, during this thesis we will use the notation of
Agda, which is (x : A) → B x, or ∀ x → B x, depending on context.

Note that if B x = C is a constant family, the dependent function has constant
return type.

11

2.11 𝐃𝐞𝐩𝐞𝐧𝐝𝐞𝐧𝐭 𝐏𝐫𝐨𝐝𝐮𝐜𝐭
A dependent product is like a pair, except the type of the second element depends
on the value of the first. Given a type 𝐴 and a family 𝐵, we have the dependent
pair Σ A B, with projections fst : Σ A B → A and snd : (x : Σ A B) → B (fst x).

record Σ𝑥 (A : Type ℓ) (B : A → Type ℓ’) : Type (ℓ-max ℓ ℓ’) where
field

fst𝑥 : A
snd𝑥 : B fst𝑥
The cubical library has some syntax declarations for dependent products, al-

lowing us to define them more easily. As an example, we can define

example2 : Σ[a ∈ ℕ] a ≡ 2
example2 .fst = 2
example2 .snd = refl

2.12 𝐏𝐫𝐨𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧𝐬
In set theory, the logic and proofs of propositions exist on a separate layer from the
sets themselves. When we claim, for instance, that ∀𝑎.𝜙(𝑎), for some formula 𝜙(𝑎),
there is an underlying interpretation of the quantifier ∀, as well as interpretation
for any symbols in 𝜙. This means that the language of first order logic lies on a
separate layer from the sets of which the logic speaks.

In MLTT, however, propositions are themselves also types. Any type can be
considered as the proposition that there exists an object of that type. This leads to a
translation between the familiar methods of formulating propositions in set theory,
to the analogous types in type theory. For instance, a statement ∃𝑥 ∈ 𝐴, 𝑃 (𝑥) in
first order logic corresponds to the dependent product Σ[x ∈ A], P x. As an
example, we will define the types that describe the ordering of natural numbers.
We can represent ≤ as

≤𝑥 : ℕ → ℕ → Type0
x ≤𝑥 y = Σ[n ∈ ℕ] n + x ≡ y

which is a function that, given x y ∶ ℕ, returns the dependent product consisting of
a natural number 𝑛, and a proof that n + x ≡ y. This corresponds to the statement
∃𝑛 ∈ ℕ, 𝑛+𝑥 = 𝑦 from first order logic. An element of the type a ≤ b represents a
proof of the statement a is smaller than b. In other words, when a type correspoding
to a proposition is inhabited by some element, we consider that proposition to be

12

true, and if the type is not inhabited we consider the proposition to be false. For
completeness, a similar definition can be made for <

<𝑥 : ℕ → ℕ → Type0
x <𝑥 y = suc x ≤ y

In the same way that dependent products represent the existential quantifier, we
can use dependent functions to express the universal quantifier. Further, we can
also use dependent types to define theorems. Throughout this thesis we will be
using several simple theorems regarding integers. For instance, the following will
be used heavily

+-zero𝑥 : ∀{x} → (x + 0) ≡ x
+-zero𝑥 {x} = +-comm x zero

zero-≤𝑥 : ∀{x} → 0 ≤ x
zero-≤𝑥 {x} = x , (+-zero x)

≤-refl𝑥 : ∀{x} → x ≤ x
≤-refl𝑥 = 0 , refl

where +-comm is a proof of commutativity of the addition function.

2.13 𝐄𝐦𝐩𝐭𝐲 𝐓𝐲𝐩𝐞
The empty type is a type with no elements. It is used to create contradictions and
to describe logical negation[12]. We define it as follows

data ⊥𝑥 : Type0 where

If we have 𝐴 ∧ ¬𝐴 in first order logic, any statement is provable. The same
is true in type theory, though it is represented differently. The empty type corre-
sponds to uninhabitance, which in the case of propositions as types correspond to
falsehood. However, if the uninhabited type is inhabited, any type is inhabited,
and thus every statement is provable[12].

rec𝑥 : ∀ {A : Type ℓ} → ⊥𝑥 → A
rec𝑥 ()

Note the absence of an =-symbol in the second line, the definition of rec𝑥. The
() pattern is the absurdity match in Agda, and represents the fact that there are no
constructors that fit the current parameter, in this case the empty type. This allows

13

us to construct contradictions. Note, however, that in HoTT, we do not have the
law of excluded middle, i.e. it is not necessarily the case that ¬¬A → A, thus this
will mainly be used to disregard certain invalid inputs to functions we define.

As there is a fair amount of overlap in the naming convention of the cubical
library, it is common to import modules by assigning them shortcuts. In the case of
the empty type, we import the module as ⊥. The empty type itself is then reached
by ⊥.⊥, and likewise for the recursor rec which is reached as ⊥.rec.

2.14 𝐄𝐪𝐮𝐚𝐥𝐢𝐭𝐲 𝐓𝐲𝐩𝐞𝐬
When considering elements 𝑎 and 𝑏 of a type 𝐴, we need a way to state whether
or not 𝑎 and 𝑏 are equal. This equality is represented by a dependent type Path :
(A : Type ℓ) → A → A → Type ℓ, with Path A a b, denoted a ≡ b consisting of
proofs that 𝑎 and 𝑏 are equal. However, the name Path hints at a slightly different
meaning for this type. In HoTT, an element x : (a ≡ b) represents a path between
the points 𝑎 and 𝑏[12]. This topological interpretation of types as spaces will yield
some interesting properties later. For any point a : A, there is an element refl : a
≡ a, representing the constant path. However, there can exist many paths between
elements. Paths x y : (a ≡ a) can represent the two independent loops on a torus,
for instance. We will mostly deal with types known as sets. A set in type theory is
a type where all paths are constant; in other words, every path between two points
is the same path.

isSet𝑥 : (A : Type ℓ) → Type ℓ
isSet𝑥 A = ∀ (a b : A) → ∀ (x y : a ≡ b) → x ≡ y

The main difference between HoTT and CTT is that in CTT, the path type is
encoded using an interval type. The interval type can take two values; i0 and i1,
called the endpoints.

A dependent path is represented in Agda as a type PathP : (A : I → Type ℓ)
→ A i0 → A i1 → Type ℓ, meaning that for any family A indexed by the interval
type, there is a type of paths between elements of the two types A i0 and A i1.
This means we can present equalities between elements of definitionally different
types, as long as the types are equal.

Further, we represent non-dependent path equality, i.e. when the type family
A is constant, as [13]

≡𝑥 : {A : Type ℓ} → A → A → Type ℓ
≡𝑥 {A = A} x y = PathP (λ i → A) x y

using these paths to represent equality, we can prove the properties of equalities,
for instance reflexivity, as

14

refl𝑥 : {x : A} → x ≡ x
refl𝑥 {x = x} = λ i → x

In other words, we prove that for any x : A, there is a path x ≡ x.
Notably, there are several other properties of paths we will be using. Namely,

we can prove that for any a b : A with p : a ≡ b, along with a family B : A → Type
ℓ and a dependent function f : (x : A) → B x, we can prove that there is a path
between f a and f b

cong𝑥 : ∀ {ℓ ℓ’} {A : Type ℓ} {B : A → Type ℓ’} {a b : A}
(f : (x : A) → B x)
(p : a ≡ b) →
PathP (λ i → B (p i)) (f a) (f b)

cong𝑥 f p = λ i → f (p i)

which is a significant help when proving statements later in this thesis.

2.15 𝐓𝐲𝐩𝐞 𝐄𝐪𝐮𝐢𝐯𝐚𝐥𝐞𝐧𝐜𝐞
There are multiple equivalent ways to define type equivalences[12]. The definition
used in the cubical library uses contractibility of fibers, two concepts which we
must define.

A contractible type is a type 𝐴 where there is an element x : A such that for
any y : A, there is a path x ≡ y.

isContr𝑥 : Type ℓ → Type ℓ
isContr𝑥 A = Σ[x ∈ A] (∀ y → x ≡ y)

Using these paths we can take any point in the space, and transport it along the
paths to the point 𝑥, i.e. we can contract it to a single point.

A fiber over a function f : A → B at a point y : B is the type of all x : A such
that f x ≡ y, in other words, the type

fiber𝑥 : (f : A → B) (y : B) → Type _
fiber𝑥 {A = A} f y = Σ[x ∈ A] (f x ≡ y)

With those concepts defined, we can proceed to define type equivalence. An
equivalence between types 𝐴 and 𝐵 is a function f : A →B, along with a proof that
the fibers of 𝑓 are contractible. We denote this as A ≃ B.[12].

record isEquiv𝑥
{ℓ ℓ’ : Level}{A : Type ℓ}{B : Type ℓ’} (f : A → B)

15

: Type (ℓ-max ℓ ℓ’) where
field

equiv-proof : (y : B) → isContr (fiber f y)

We can note that any equality 𝐴 ≡ 𝐵 yields a trivial equivalence A ≃ B; i.e. that
there exists an f : (A ≡B) →(A ≃ B).

The cubical library also defines a type called Iso, for isomorphisms between
types. Reasoning with isomorphisms rather than with contractible fibers will be
more familiar to those without a background in topology. An isomorphism consists
of two functions and proofs that they are left and right inverses of each other.

record Iso𝑥 {ℓ ℓ’} (A : Type ℓ) (B : Type ℓ’) : Type (ℓ-max ℓ ℓ’) where
constructor iso
field

fun : A → B
inv : B → A
rightInv : ∀ b → fun (inv b) ≡ b
leftInv : ∀ a → inv (fun a) ≡ a

Further, these two representations of equivalence are proven equivalent in the cubi-
cal libray, through isoToIsEquiv. The type of isomorphisms is then proven equiv-
alent to equality through isoToPath, which will be used later.

2.16 𝐔𝐧𝐢𝐯𝐚𝐥𝐞𝐧𝐜𝐞
In MLTT, it is impossible to define a predicate that distinguishes isomorphic types[12].
In other words, given A ≃ B, we cannot prove that A ≢B, but it is not necessarily
true that A ≡B. However, mathematicians often use isomorphic objects and in-
formally assume that if one can prove a statement for a mathematical object, all
objects isomorphic to that object has that same property. In fact is consistent with
MLTT to assume that if we have A ≃ B, we also have A ≡B. This assumption is
called the univalence axiom, and is expressed in cubical Agda as ua𝑥 : A ≃ B →
A ≡ B.

In Cubical Agda, the interval types used for paths allows for the direct proof
of this statement, turning it from an axiom to a theorem. In this way, CTT is a
constructive approach to homotopy type theory. The proof of this involves the
operation of glueing, which expresses that to be extensible is invariant by equiva-
lence, which allows for the definition of a composition operator for universes, with
which one can prove the univalence axiom[6].

16

2.17 𝐈𝐧𝐭𝐞𝐧𝐬𝐢𝐨𝐧𝐚𝐥 𝐚𝐧𝐝 𝐄𝐱𝐭𝐞𝐧𝐬𝐢𝐨𝐧𝐚𝐥 𝐄𝐪𝐮𝐚𝐥𝐢𝐭𝐢𝐞𝐬
In logic, multiple types of equalities can be considered. Notably, we can consider
two objects to be the same if they are defined identically, this type of equality is
called intensional equality. However, we often want to consider objects equal if
they have the same external properties. For instance, any two functions can be
considered equal if they produce the same output for any given input. This type of
equality is called extensional. HoTT and CTT are extensional type theories, as we
will discuss in section 2.16.

2.18 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 𝐄𝐱𝐭𝐞𝐧𝐬𝐢𝐨𝐧𝐚𝐥𝐢𝐭𝐲
Consider the functions

f𝑒𝑥 g𝑒𝑥 : ℕ → ℕ

f𝑒𝑥 n = (n + 5)
g𝑒𝑥 n = (5 + n)

For any number 𝑛 it is obvious the two functions always return the same result.
However, they are not defined the same way. In order to consider these functions
equal, we must use a consequence of the axiom of univalence; function extension-
ality. If two functions always produce the same value for any given input, they
are extensionally equal, and in HoTT, this indeed implies equality. Thus we can
define

example3 : f𝑒𝑥 ≡ g𝑒𝑥
example3 = funExt λ x → +-comm x 5

In the above example, we use function extensionality, funExt, to prove the
equality. It transports the proof of the equality after function application to an
equality proof before said application; i.e. on the functions themselves. Function
extensionality is proved in the Cubical library through direct use of the interval
types from CTT.

funExt𝑥 : {B : A → I → Type ℓ}
{f : (x : A) → B x i0}
{g : (x : A) → B x i1}

There are three implicit parameters; B is an type family dependent on 𝐴 and 𝐼, the
interval type. This type is needed to specify that the functions 𝑓 and 𝑔 may have

17

different range types. The functions 𝑓 and 𝑔 are declared as functions dependent
on this family.

→ ((x : A) → PathP (B x) (f x) (g x))

It also requires a proof that given any x, there is a path betwen f x and g x. And
finally, it will provide a proof that there is a path between 𝑓 and 𝑔

→ PathP (λ i → (x : A) → B x i) f g

And finally, it needs a proof.

funExt𝑥 x i p = x p i

2.19 𝐌𝐞𝐫𝐞 𝐏𝐫𝐨𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧𝐬
When we consider the usual rules from first-order logic, we want any two proofs
of a proposition to be equivalent, a notion which is known as proof-irrelevance.
This enables us to easier work with the rules known to us from first-order logic.
Types that satisfy this equivalence are called mere propositions. This is defined
using a type

isProp𝑥 : (A : Type ℓ) → Type ℓ
isProp𝑥 A = (a b : A) → a ≡ b

We can use this to define certain logical consequences known from first order logic

equivalence : (P : isProp A) → (Q : isProp B)
→ (A → B) → (B → A) → A ≡ B

equivalence P Q f g = isoToPath (iso f g
(λ b → Q (f (g b)) b)
(λ a → P (g (f a)) a))

When forming other types using mere propositions, the property of being a
mere proposition is often inherited. For instance, we can define

isPropPair : {𝜙 : isProp A} {ψ : isProp B}
→ isProp (A × B)

isPropPair {𝜙 = 𝜙} {ψ} (a1 , a2) (b1 , b2)
= cong (λ a → (a , a2)) (𝜙 a1 b1)
∙ cong (λ a → (b1 , a)) (ψ a2 b2)

18

When using mere propositions to form a dependent product, it is enough to prove
equivalence between the elements of the first type, since we have

Σ≡Prop𝑥 : {B : A → Type ℓ}
→ ((x : A)
→ isProp (B x))
→ {u v : Σ A B}
→ (p : u .fst ≡ v .fst)
→ u ≡ v

Σ≡Prop𝑥 pB {u} {v} p i .fst = (p i)
Σ≡Prop𝑥 pB {u} {v} p i .snd

= isProp→PathP (λ i → pB (p i)) (u .snd) (v .snd) i

When interpreting the dependent product type as the existential quantifier, we note
that the above theorem equates to the fact that any two proofs of the existence of an
element satisfying a proposition are equivalent, if they instantiate this existential
quantifier with the same element.

2.20 𝐃𝐞𝐜𝐢𝐝𝐚𝐛𝐢𝐥𝐢𝐭𝐲
For some propositions, one can construct algorithms to find whether they hold or
not. When regarding propositions as types, such an algorithm would yield either
a proof of inhabitance, or truth, or of emptiness, falsehood. A type is considered
decidable if there is an algorithm that terminates in finite time for deciding whether
it is inhabited. The type representing decidability is

data Dec𝑥 (P : Type ℓ) : Type ℓ where
yes𝑥 : (p : P) → Dec𝑥 P
no𝑥 : (¬p : ¬ P) → Dec𝑥 P

For instance, we can prove that if we have two natural numbers 𝑚, 𝑛, it is decidable
whether m ≤ n, by providing an algorithm for calculating it.

decidable≤ : (m n : ℕ) → Dec (m ≤ n)

The type zero-≤ states that any natural number is greater than or equal to zero.

decidable≤ zero n = yes zero-≤

No number is less than zero.

decidable≤ (suc m) (zero) = no (¬-<-zero)

19

Finally, (suc m) ≤ (suc n) if m ≤ n. The with syntax, followed by a number of lines
starting with ... | — representing the same function name and parameters as on the
line above — allows for pattern matching by providing separate implementations
for each possible value of whatever is applied. In the below example, we match
decidable≤ m n with its two constructors, yes and no.

decidable≤ (suc m) (suc n) with decidable≤ m n
... | yes p = yes (suc-≤-suc p)
... | no ¬p = no (λ x → ¬p (pred-≤-pred x))

where suc-≤-suc : m ≤ n → (suc m) ≤ (suc n) and pred-≤-pred : (suc m) ≤ (suc
n) → m ≤ n[1]. A common use case for decidability is on equality types. A type
with decidable equality types is called discrete, a property we will be using later
to declare certain functions and types.

Discrete𝑥 : Type ℓ → Type ℓ
Discrete𝑥 A = (x y : A) → Dec (x ≡ y)

As an example, we will prove that the natural numbers are discrete.

discreteℕ𝑥 : Discrete ℕ
discreteℕ𝑥 zero zero = yes refl
discreteℕ𝑥 zero (suc y) = no ℕ.znots
discreteℕ𝑥 (suc x) zero = no ℕ.snotz
discreteℕ𝑥 (suc x) (suc y) with discreteℕ𝑥 x y
... | yes p = yes (cong suc p)
... | no ¬p = no λ x1 → ¬p (cong predℕ x1)

where ℕ.znots : ∀n → ¬ (0 ≡ suc n) and ℕ.snotz : ∀n → ¬ (suc n ≡ 0)[1].

20

𝐂𝐡𝐚𝐩𝐭𝐞𝐫 3

𝐂𝐨𝐧𝐬𝐭𝐫𝐚𝐢𝐧𝐭 𝐏𝐫𝐨𝐠𝐫𝐚𝐦𝐦𝐢𝐧𝐠

Constraint programming is a method to define models for mathematical satisfac-
tion or optimization problems, and let generalized solvers find solutions to these
models[2]. We will focus on a subset of the MiniZinc constraint programming
language[9], consisting of fixed-size arrays, integers, ranges and a few of the built
in functions.

A MiniZinc model consists of variables, parameters and constraints. The pa-
rameters are declared symbols, which when defined present an instance of the
model. As an example, we model the existence of 𝑛 natural numbers whose prod-
uct is lesser than or equal to their sum, first in MiniZinc, and then represent it in
Agda.

1 i n t : n ;
2 ar ray [1 . . n] o f var i n t : v ;
3

4 c o n s t r a i n t (f o r a l l (x in v) (x >= 0)) ;
5 c o n s t r a i n t (sum(x in v) (x) <= product (x in v) (x)) ;

Listing 3.1: plustimes.mzn

In order to use HoTT to prove anything about our selected subset of MiniZinc,
we need to represent MiniZinc models in HoTT.

3.1 𝐃𝐚𝐭𝐚 𝐓𝐲𝐩𝐞𝐬
The data types from MiniZinc we will be representing in HoTT are the natural
numbers, ranges, and arrays. The natural numbers will simply be represented by
the natural numbers in HoTT.

Ranges, where 𝑎..𝑏 in MiniZinc represents the set of natural numbers { 𝑎, 𝑎 +
1, … , 𝑏 }[9], will be reduced in scope to ranges with 𝑎 = 0. This is most easily

21

represented by the type Fin, defined in the cubical library.

data Fin𝑥 : ℕ → Type0 where
zero𝑥 : {n : ℕ} → Fin𝑥 (suc n)
suc𝑥 : {n : ℕ} (i : Fin𝑥 n) → Fin𝑥 (suc n)

Fin is a type family, and for any n : ℕ, Fin n is a type with exactly n elements.
Arrays will be represented by the vector type Vec defined in the cubical library.

data Vec𝑥 (A : Type ℓ) : ℕ → Type ℓ where
[] : Vec𝑥 A zero
∷ : ∀ {n} (x : A) (xs : Vec𝑥 A n) → Vec𝑥 A (suc n)

Which states that a vector is either the empty vector [], or a ∷ v, where a : A and
v is a vector. This definition is in effect a linked list with its length encoded in its
type.

In order to easier represent calculations to be done later, we also define some
well known functions representing common usages on lists. The head of the list is
the first element of the list.

head𝑥 : Vec A (suc n) → A
head𝑥 (x ∷ xs) = x

The tail is everything except the first element

tail𝑥 : Vec A (suc n) → Vec A n
tail𝑥 (x ∷ xs) = xs

Map applies a function to each element of a list

map𝑥 : (A → B) → Vec A n → Vec B n
map𝑥 f [] = []
map𝑥 f (x ∷ v) = f x ∷ map𝑥 f v

Foldr applies a function with an accumulator to each element of the list.

foldr : (A → B → B) → B → Vec A n → B
foldr f b [] = b
foldr f b (x ∷ xs) = f x (foldr f b xs)

Zip takes elements from two vectors and produces a vector of pairs.

zip : Vec A n → Vec B n → Vec (A × B) n
zip [] [] = []
zip (x ∷ xs) (y ∷ ys) = (x , y) ∷ (zip xs ys)

22

Indices is the array [0, 1, 2, ..., 𝑛] for any n.

indices : ∀{n} → Vec (Fin n) n
indices {zero} = []
indices {suc n} = zero ∷ Vec.map suc indices

3.2 𝐂𝐨𝐧𝐬𝐭𝐫𝐚𝐢𝐧𝐭𝐬
In constraint programming, a constraint is a restriction, or relation, on set of vari-
ables. They are formulated as properties, or conditions, set upon these variables[2].
Since propositions are themselves types, a constraint on some collection of vari-
ables is a type family on the values of these variables, such that a constraint is
considered satisfied if its type is inhabited.

For instance, constraining a natural number to be less than 5, would translate
to the type

≤5 : ℕ → Type0
≤5 n = n ≤ 5

In general, it is not required that a constraint is a mere proposition, though as
we are mostly interested in inhabitance rather that specific values, the constraints
in the rest of the thesis will all be mere propositions.

3.3 𝐌𝐨𝐝𝐞𝐥𝐬
Every MiniZinc model will be represented by a product type consisting of arbi-
trarily many fields and parameters

ExampleModel : (param : ℕ) → Type0
ExampleModel n = Σ[v ∈ ℕ] v ≤ n

Here, we define a model by the name of Model, with parameter param of type ℕ.
The variables and constraints are represented as fields in the record, which when
constructing elements of the record type need to be supplied. Thus, a solution
to the model represented is an element of the Model type, and its satisfiability
corresponds to inhabitance.

We can now formalise the model in Listing 3.1.
Note that in order to restrict the integer data type in MiniZinc to the natural

numbers, we simply constrain each element of the array to be greater than or equal

23

to zero. This is automatically satisfied when modeling using natural numbers, so
the constraint is not represented in the Agda model.

Plus>Times : ℕ → Type0
Plus>Times n = Σ[v ∈ Vec ℕ n] (foldr (_*_) 1 v ≤ foldr (_+_) 0 v)

And provide a solution to it.

pf : Plus>Times 2
pf = (1 ∷ 0 ∷ []) , zero-≤

Note that in order for a model to be considered satisfied, it requires a proof for
every constraint. In this instance, it is a rather simple task, since the calculations
are done by the compiler, and we merely need to supply the proof that 1 > 0.

However, for more intricate constraints, using the property of decidability to
allow for the compiler to provide automatic proofs, we can simplify this process
slightly.

3.4 𝐃𝐞𝐜𝐢𝐝𝐚𝐛𝐥𝐞 𝐂𝐨𝐧𝐬𝐭𝐫𝐚𝐢𝐧𝐭𝐬 𝐢𝐧 𝐌𝐨𝐝𝐞𝐥𝐬
Given a decidable type, we can let the Agda compiler use the decidability to auto-
matically infer proofs of statements. This enables us to easily check that constraints
hold on solutions.

Given a decidable type, we can convert the proof to a boolean.

isYes : Dec A → Bool
isYes (yes p) = true
isYes (no ¬p) = false

A boolean can in turn be represented as either the unit type, or the empty type.

T : Bool → Type0
T true = Unit
T false = ⊥.⊥

isYes converts the truth value of Q into a boolean, and back to a type through T.

True𝑥 : Dec A → Type0
True𝑥 Q = T (isYes Q)

Thus, if True is inhabited, Q is true, and there is exactly one element tt : True Q.
This enables the Agda compiler to, after evaluating Q, infer the type of True Q. If

24

it is indeed true, the compiler will instantiate it with tt. If it is false, it will fail to
compile.

AutoProof : (Q : Dec A) → {True Q} → A
AutoProof (yes p) = p

As a simple example, we can let agda prove that 20 ≤ 42, through

20≤42 : 20 ≤ 42
20≤42 = AutoProof (decidable≤ 20 42)

while this is easy to prove manually through

20≤42’ : 20 ≤ 42
20≤42’ = ≤-+k {n = 22} zero-≤

for more complex constraints, allowing automatic proof can significantly lessen
the need for manual labour.

3.5 𝐆𝐥𝐨𝐛𝐚𝐥 𝐂𝐨𝐧𝐬𝐭𝐫𝐚𝐢𝐧𝐭𝐬
A global constraint is a constraint that represents a relation between a nonfixed
number of variables. We will be using the MiniZinc global constraint 𝐚𝐥𝐥𝐝𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐭,
which takes an array as input, and presents a set of (

𝑛
2) inequalities. For in-

stance, 𝐚𝐥𝐥𝐝𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐭 [𝑎, 𝑏, 𝑐], would produce (𝑎 ≠ 𝑏) ∧ (𝑎 ≠ 𝑐) ∧ (𝑏 ≠ 𝑐). Note
that this is equivalent, by associativity of logical conjunction, to (𝑎 ≠ 𝑏) ∧ (𝑎 ≠
𝑐)∧𝐚𝐥𝐥𝐝𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐭 [𝑏, 𝑐]. The first two clauses together state that 𝑎 is not an element
of [𝑏, 𝑐]. This can be represented as ¬𝐞𝐥𝐞𝐦 𝑎 [𝑏, 𝑐], so that 𝐚𝐥𝐥𝐝𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐭 [𝑎, 𝑏, 𝑐] =
(¬𝐞𝐥𝐞𝐦 𝑎 [𝑏, 𝑐] × 𝐚𝐥𝐥𝐝𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐭 [𝑏, 𝑐]). In Agda, this is built as two recursive defi-
nitions.

¬elem : {A : Type ℓ} → A → (Vec A n) → Type ℓ

There are no elements of the empty list

¬elem _ [] = Unit*

An element is not in a list if its not equal to the head of the list, and not an element
of the tail.

¬elem a (x ∷ v) = (¬ a ≡ x) × (¬elem a v)

alldifferent : {A : Type ℓ} → Vec A n → Type ℓ

25

All elements of the empty list are different.

alldifferent [] = Unit*

All elements of a nonempty list are different if the head is not in the tail, and all
elements of the tail are different.

alldifferent (x ∷ v) = ¬elem x v × alldifferent v

Interestingly, and of great use to us in section 4.1, the alldifferent constraint is
equivalent to injectivity of the index function, also known as the lookup function.

We start by defining injectivity as a type.

injective : (A → B) → Type _
injective f = ∀ a b → f a ≡ f b → a ≡ b

Injectivity is a mere proposition

injective-isProp : ∀ {𝜙 : isSet A} {f : A → B}
→ isProp (injective f)

injective-isProp {𝜙 = 𝜙} = isPropΠ3 λ x y _ → 𝜙 x y

We define a type synonym for injectivity of the lookup function.

injective-lookup : {A : Type ℓ} → Vec A n → Type ℓ
injective-lookup v = injective (λ k → lookup k v)

And prove some theorems about it to assist us in the proof.
If the lookup function is injective on 𝑣, then the lookup function is injective

on the tail of 𝑣.

injective-lookup-tail :
∀ {v : Vec A (suc (suc n))}
→ injective-lookup v
→ injective-lookup (tail v)

injective-lookup-tail {v = x ∷ v} ι a b p = injSucFin (ι (suc a) (suc b) p)

Injectivity of the lookup funciton is a mere proposition

injective-lookup-isProp : ∀{A : Type ℓ} {v : Vec A n}
→ isProp (injective-lookup v)

injective-lookup-isProp {v = v}
= injective-isProp {𝜙 = isSetFin}

26

If the lookup function is injective on a vector, it is injective efter removing the
second element. This lemma allows us to inductively operate on the tail of a list
while keeping the head intact.

injective-lookup-skipelem :
∀ {v : Vec A (suc (suc n))}
→ injective-lookup v
→ injective-lookup ((head v) ∷ (tail (tail v)))

injective-lookup-skipelem ι zero zero p = refl
injective-lookup-skipelem {v = x ∷ x1 ∷ v} ι zero (suc b) p =

⊥.rec (Fin.znots (ι zero (suc (suc b)) p))
injective-lookup-skipelem {v = x ∷ x1 ∷ v} ι (suc a) zero p =

⊥.rec (Fin.snotz (ι (suc (suc a)) zero p))
injective-lookup-skipelem {v = x ∷ x1 ∷ v} ι (suc a) (suc b) p =

injective-lookup-tail ι (suc a) (suc b) p

If the lookup function is injective, the value of the head is not an element of the
tail of the vector.

injective-lookup-¬elem : ∀ {v : Vec A (suc n)}
→ injective-lookup v
→ ¬elem (head v) (tail v)

injective-lookup-¬elem {v = x ∷ []} ι = tt*
injective-lookup-¬elem {v = x ∷ x1 ∷ v} ι .fst π

= Fin.znots (ι zero (suc zero) π)
injective-lookup-¬elem {v = x ∷ x1 ∷ v} ι .snd

= injective-lookup-¬elem (injective-lookup-skipelem ι)

We prove ¬elem is a mere proposition.

¬elem-isProp : ∀ {x : A} {v : Vec A n}
→ isProp (¬elem x v)

¬elem-isProp {v = []} a b = refl
¬elem-isProp {x = x} {v = v ∷ vs} a b

= Σ≡Prop (λ _ → ¬elem-isProp) (isProp¬ (x ≡ v) (fst a) (fst b))

After which we prove that alldifferent is a mere proposition.

alldifferent-isProp : ∀ {v : Vec A n}
→ isProp (alldifferent v)

27

alldifferent-isProp {v = []} x y = refl
alldifferent-isProp {v = x1 ∷ v}

= isPropΣ ¬elem-isProp (λ _ → alldifferent-isProp)

We can now begin to prove that they imply each other. First, we prove that given
that the lookup function is injective, alldifferent is satisfied.

injective-lookup→alldifferent : ∀ {v : Vec A n}
→ injective-lookup v
→ alldifferent v

injective-lookup→alldifferent {v = []} ι = tt*
injective-lookup→alldifferent {v = x ∷ []} ι

= (injective-lookup-¬elem ι) , tt*
injective-lookup→alldifferent {v = x ∷ x1 ∷ v} ι .fst

= (injective-lookup-¬elem ι)
injective-lookup→alldifferent {v = x ∷ x1 ∷ v} ι .snd

= injective-lookup→alldifferent (injective-lookup-tail ι)

We provide a translation between ¬elem and lookup.

¬elem→¬lookup : ∀ {x : A} {v : Vec A n}
→ (b : Fin n)
→ ¬elem x v
→ ¬ (x ≡ lookup b v)

¬elem→¬lookup {v = x1 ∷ v} zero ne p
= fst ne p

¬elem→¬lookup {v = x ∷ v} (suc b) ne p
= ¬elem→¬lookup b (snd ne) p

Which we use to prove that given alldifferent, the lookup function is injective.

alldifferent→injective-lookup : ∀ {v : Vec A n}
→ alldifferent v
→ injective-lookup v

alldifferent→injective-lookup {v = x ∷ []} ad zero zero _ = refl
alldifferent→injective-lookup {v = x ∷ y ∷ v} (cur , nxt) zero zero p = refl
alldifferent→injective-lookup {v = x ∷ y ∷ v} (cur , nxt) zero (suc b) p =

⊥.rec (¬elem→¬lookup b cur p)

28

alldifferent→injective-lookup {v = x ∷ y ∷ v} (cur , nxt) (suc a) zero p =
⊥.rec (¬elem→¬lookup a cur (sym p))

alldifferent→injective-lookup {v = x ∷ y ∷ v} (cur , nxt) (suc a) (suc b) p =
cong suc (alldifferent→injective-lookup nxt a b p)

Finally, since we have functions in both directions between two mere propositions,
we have an equality of types.

injective-lookup≡alldifferent : {v : Vec A n}
→ injective-lookup v ≡ alldifferent v

injective-lookup≡alldifferent {v = v} =
equivalence

injective-lookup-isProp
alldifferent-isProp
injective-lookup→alldifferent
alldifferent→injective-lookup

Further, we can prove that alldifferent is a decidable type.

dec¬elem : ∀ {n} {A : Type ℓ} {𝜙 : Discrete A} {x : A} {v : Vec A n}
→ Dec (¬elem x v)

dec¬elem {n = .zero} {A} {𝜙} {x} {v = []} = yes tt*
dec¬elem {n = .(suc _)} {A} {𝜙} {x} {v = v ∷ vs} with 𝜙 x v
... | yes p = no (λ x1 → fst x1 p)
... | no ¬p with dec¬elem {𝜙 = 𝜙} {x = x} {v = vs}
... | yes q = yes (¬p , q)
... | no ¬q = no (λ x1 → ¬q (snd x1))

decAlldifferent : ∀ {n} {A : Type ℓ} {𝜙 : Discrete A} (v : Vec A n)
→ Dec (alldifferent v)

decAlldifferent {n = zero} {A} {𝜙} [] = yes tt*
decAlldifferent {n = (suc n)} {A} {𝜙} (x ∷ v) with dec¬elem {𝜙 = 𝜙} {x = x} {v = v}
... | no ¬p = no (λ x1 → ¬p (fst x1))
... | yes p with decAlldifferent {n = n} {𝜙 = 𝜙} v
... | yes q = yes (p , q)
... | no ¬q = no (λ x1 → ¬q (snd x1))

And the same about lookup injectivity, using the implications defined above.

decInjective-lookup : ∀ {n} {A : Type ℓ} {𝜙 : Discrete A} (v : Vec A n)
→ Dec (injective-lookup v)

29

decInjective-lookup {𝜙 = 𝜙} v with decAlldifferent {𝜙 = 𝜙} v
... | yes p = yes (alldifferent→injective-lookup p)
... | no ¬p = no (λ x → ¬p (injective-lookup→alldifferent x))

Thus we have provided a method of representing constraints that allow for
proofs of their equivalence. In short, we define constraints as propositions, in this
case mere propositions. We can then prove their equivalence and optionally pro-
vide a proof of their decidability for use in confirming solutions we might provide
to our models later.

Using this, we can move on to reasoning about models.

30

𝐂𝐡𝐚𝐩𝐭𝐞𝐫 4

𝐌𝐨𝐝𝐞𝐥 𝐑𝐞𝐚𝐬𝐨𝐧𝐢𝐧𝐠

In this chapter we will examine equivalencies of models, and then reason about
constraint modeling techniques, and their effect on these equivalencies.

4.1 𝐍-𝐐𝐮𝐞𝐞𝐧𝐬
One of the classical constraint programming problems is the n-queens problem.
The goal is to place 𝑛 queens on a 𝑛 − 𝑏𝑦 − 𝑛 chessboard, without any one queen
threatening another. We will prove the equivalence of two different models of this
problem.

In order to properly define the types we need, we define some helper types.
diagup and diagdown represent the diagonals in a positional matrix of queens de-
fined by the type Vec (Fin n) n.

diagup : ∀{n} → Vec (Fin n) n → Vec ℕ n
diagup {n} positions = (Vec.map

(λ x → ((toℕ (fst x)) + toℕ (snd x) + 1))
(zip positions indices))

diagdown : ∀{n} → Vec (Fin n) n → Vec ℕ n
diagdown {n} positions = (Vec.map

(λ x → ((n - 1) + toℕ (fst x) - toℕ (snd x)))
(zip positions indices))

And the nqueens models themselves are as follows

31

1 i n c l u d e ” g l o b a l s . mzn” ;
2 i n t : w;
3 s e t o f i n t : dim = 0 . . (w- 1) ;
4

5 ar ray [dim] o f var dim : p o s i t i o n s ;
6 % No two queens on any one row
7 c o n s t r a i n t a l l d i f f e r e n t (p o s i t i o n s) ;
8 % Diagona l s
9 c o n s t r a i n t a l l d i f f e r e n t (

10 [p o s i t i o n s [x] + x | x in dim]
11) ;
12 c o n s t r a i n t a l l d i f f e r e n t (
13 [p o s i t i o n s [x] - x | x in dim]
14) ;

Listing 4.1: nQueens1.mzn

which in Agda is

q1 : ℕ → Type0
q1 n = Σ[v ∈ Vec (Fin n) n]

alldifferent v ×
alldifferent (diagup v) ×
alldifferent (diagdown v)

and

32

1 i n t : w;
2

3 s e t o f i n t : dim = 1 . .w;
4

5 ar ray [dim] o f var dim : p o s i t i o n s ;
6

7 p r e d i c a t e i n j e c t i v e _ i n d e x (ar ray [dim] o f var i n t : x) =
8 f o r a l l (i , j i n dim) (x [i] = x [j] -> i = j) ;
9

10 c o n s t r a i n t i n j e c t i v e _ i n d e x (p o s i t i o n s) ;
11

12 c o n s t r a i n t i n j e c t i v e _ i n d e x (
13 [p o s i t i o n s [x] + x | x in dim]
14) ;
15

16 c o n s t r a i n t i n j e c t i v e _ i n d e x (
17 [p o s i t i o n s [x] - x | x in dim]
18) ;

Listing 4.2: nQueens2.mzn

which in Agda is

q2 : ℕ → Type0
q2 n = Σ[v ∈ Vec (Fin n) n]

injective-lookup v ×
injective-lookup (diagup v) ×
injective-lookup (diagdown v)

Note that the models have the same variable type Vec (Fin n) n). In other words,
they only differ in the constraints. This is not required, but makes the equality
proof much simpler.

In order to prove the equivalence between these models, we need to prove that
alldifferent is equivalent to injective-lookup.

The proof of equality between these models is constructed through transporting
through the injective-lookup≡alldifferent equality.

q1≡q2 : ∀{n} → q1 n ≡ q2 n
q1≡q2 {n} = λ i → Σ[v ∈ Vec (Fin n) n]

injective-lookup≡alldifferent {v = v} (~ i) ×
injective-lookup≡alldifferent {v = diagup v} (~ i) ×
injective-lookup≡alldifferent {v = diagdown v} (~ i)

33

Thus we have proven that the two models of the n-queens problem are equiv-
alent, however the important part is found in the methodology used. We manage
to use our framework to define two models of the same problem, and prove an
equality between the models through the usage of univalence.

4.2 𝐒𝐲𝐦𝐦𝐞𝐭𝐫𝐲 𝐁𝐫𝐞𝐚𝐤𝐢𝐧𝐠
When creating models, it is often the case that the set of possible solutions contain
several symmetries. As a simple example, one might consider the model

pairSum : Type0
pairSum = Σ[x ∈ ℕ × ℕ] (fst x) + (snd x) ≡ 5

which models the existence of two natural numbers, with a parameterised sum.
However, the two solutions

s1 s2 : pairSum

s1 = (1 , 4) , refl

s2 = (4 , 1) , refl

present a symmetry, due to the commutativity of addition. In this case, any solution
(a , b) also presents a solution (b , a). By taking advantage of known symmetries,
we can lessen the search space by adding additional constraints. For instance, we
can ensure that a ≤ b by adding it as an additional constraint.

pairSum2 : Type0
pairSum2 = Σ[x ∈ ℕ × ℕ] ((fst x) + (snd x) ≡ 5) × ((fst x) ≤ (snd x))

This model does not express the previously mentioned symmetry. Generally, sym-
metries can be eliminated through some constraint. We can represent a symmetry
through a projection, by sending all symmetric values onto a chosen candidate. In
essence, this relates to the idea of a quotient map.

symmetry : (A : Type ℓ) (B : A → Type ℓ’) → Type _
symmetry A B = Σ[f ∈ (A → A)] ((x : Σ A B) → B (f (fst x)))

The symmetry breaking can then be encoded as the constraint that the element is
projected onto itself by the symmetry projection.

elimSym : ∀{A : Type ℓ} {B : A → Type ℓ’} → symmetry A B → Type (ℓ-max ℓ ℓ’)
elimSym {A = A} {B} (f , pf) = Σ[x ∈ A] (B x) × (f x ≡ x)

34

In order to show this methodology, we can describe the symmetry in the pairSum
model using the symmetry type. Before we can construct this element, we need to
define our projection function. For the sake of simplicity of implementation, we
define the function using the decidability of the ≤ operator.

proj : {a b : ℕ} → Dec (a ≤ b) → ℕ × ℕ
proj {a} {b} (yes _) = a , b
proj {a} {b} (no _) = b , a

We can then proceed to define the symmetry

pairSumSymmetry : symmetry (ℕ × ℕ) (λ x → (fst x) + (snd x) ≡ 5)

pairSumSymmetry .fst (a , b) = proj (decidable≤ a b)
pairSumSymmetry .snd ((a , b) , p) with decidable≤ a b
... | yes _ = p
... | no _ = +-comm b a ∙ p

which we can prove is equivalent to our example symmetry break as follows.
First, we show that a ≤ b is equivalent to the projection function projecting a

value onto itself.

≤-proj≡ : {a b : ℕ} {p : Dec (a ≤ b)} → a ≤ b → proj p ≡ (a , b)
≤-proj≡ {p = p} pf with p
... | yes q = refl
... | no ¬q = ⊥.rec (¬q pf)

proj≡-≤ : {a b : ℕ} {p : Dec (a ≤ b)} → proj p ≡ (a , b) → a ≤ b
proj≡-≤ {p = yes p} const = p
proj≡-≤ {p = no ¬p} const = 0 , (λ i → snd (const i))

≤≡const : ∀{a b} {p : Dec (a ≤ b)} → (proj p ≡ (a , b)) ≡ (a ≤ b)
≤≡const {a} {b} {p} = isoToPath

(iso
proj≡-≤
≤-proj≡
(λ b1 → m≤n-isProp (proj≡-≤ {p = p} (≤-proj≡ b1)) b1)
λ a1 → isSetΣ isSetℕ (λ _ → isSetℕ) (proj p) (a , b) (≤-proj≡ (proj≡-≤ a1)) a1

)

Which we can use to finally prove the equivalence of the two models.

pairSum2≡elimSym : pairSum2 ≡ elimSym pairSumSymmetry
pairSum2≡elimSym i =

35

Σ (ℕ × ℕ)
λ x →

Σ (fst x + snd x ≡ 5)
λ x1 → ≤≡const {a = fst x} {b = snd x} {p = decidable≤ (fst x) (snd x)} (~ i)

The two main ways of breaking symmetries in models are through reformulation
and through constraints. The latter of which was applied in the example above.
The former mothod is more difficult to express using types, and is left as future
work.

4.3 𝐈𝐦𝐩𝐥𝐢𝐞𝐝 𝐂𝐨𝐧𝐬𝐭𝐫𝐚𝐢𝐧𝐭𝐬
When modeling, it is often useful to supply the solvers with additional constraints,
that are already implied by the other constraints. This is due to the fact that different
solvers interact with constraints in different ways, such that some constraints allow
better propagation of solution domains. Ideally, since no solutions are added nor
removed by providing an implied constraint, the models are equivalent using the
methodology presented here.

A good example of this is the magic series puzzle. A magic series of length 𝑛
is an array of integers such that the element at index 𝑖 is the number of occurrences
of 𝑖. It is implied that the sum of the elements of the array is equal to the number
𝑛. However, as the proofs end up being fairly complicated for the general case,
we will only prove that this condition is satisfied for one solution, to the model
instance with 𝑛 = 4.

In order to model the magic condition, we need to count the number of occur-
rences of an element in an array. This means that there must be an algorithm that
decides whether two elements are equal, i.e. they need to be discrete.

count : {A : Type ℓ} (𝜙 : Discrete A) → Vec A n → A → ℕ
count {A = A} 𝜙 [] x = 0
count {A = A} 𝜙 (x1 ∷ v) x with 𝜙 x1 x
... | yes p = suc (count 𝜙 v x)
... | no ¬p = count 𝜙 v x

Now we can state the magic condition

magicCondition : ∀ {n : ℕ} → Vec ℕ n → Type0
magicCondition {n = n} v

= ∀(i : Fin n)
→ (count (discreteℕ) v (toℕ i)) ≡ (lookup i v)

And a formulation for calculating the sum of a vector of natural numbers.

36

sum : Vec ℕ n → ℕ
sum = foldr _+_ 0

We also need to prove that the magic condition is decidable. First, we prove that
given a family over Fin n that is decidable for all n, the type representing the quan-
tified conjunction over Fin is decidable.

decForallFin : ∀{n} {P : Fin n → Type ℓ}
→ (∀ x → Dec (P x))
→ Dec ((x : Fin n) → P x)

decForallFin {n = zero} _ = yes (λ ())
decForallFin {n = suc n} f with f zero
... | no ¬p = no λ x → ¬p (x zero)
... | yes p with decForallFin (λ x → f (suc x))
... | no ¬q = no (λ x → ¬q (λ x1 → x (suc x1)))
... | yes q = yes (λ { zero → p

; (suc x) → q x })

Which allows us to prove that the magic condition is decidable.

decidableMC : ∀ {n : ℕ} (v : Vec ℕ n)
→ Dec (magicCondition v)

decidableMC v
= decForallFin (λ x →

discreteℕ (count discreteℕ v (toℕ x)) (lookup x v)
)

Finally, we can construct the models

MS1 MS2 : ℕ → Type0

MS1 n = Σ[series ∈ Vec ℕ n]
magicCondition series

MS2 n = Σ[series ∈ Vec ℕ n]
magicCondition series ×
(sum series ≡ n)

And present a solution to each

mS1 : MS1 4
mS1 = s , AutoProof (decidableMC s)

37

where
s = 1 ∷ 2 ∷ 1 ∷ 0 ∷ []

mS2 : MS2 4
mS2 = fst mS1 , (snd mS1 , refl)

Note that mSol2 defines the variable value and the proof of the magic condition
by directly referencing mSol.

The implied constraint is represented in the second constraint. Since we only
provide an example where this holds in the case of our fixed series [1, 2, 1, 0],
the operations defined by the sum function simply evaluate, leaving the type of
the implied constraint in mSol2 as 4 ≡ 4, which is proven with refl. However,
it is much harder to prove that this constraint indeed is implied, that it holds for
any valid assignment of the variable. We can formalise implied constraints by a
dependent type

implied : ∀{A : Type ℓ} → (B : A → Type ℓ’) → (A → Type ℓ’) → Type (ℓ-max ℓ ℓ’)
implied {A = A} B C = ∀(x : Σ A B) → (C (fst x))

In general, any constraint that is automatically satisfied can be added to a model
while still maintaining equality, as long as the constraint on any solution is a mere
proposition.

implied≡ : ∀{A : Type ℓ} {B : A → Type ℓ’} {C : A → Type ℓ’}
→ implied B C → (∀ x → isProp (C x))
→ Σ A (λ x → B x × C x) ≡ Σ A B

implied≡ {A = A} {B = B} ι prop =
Σ-cong-snd (λ x →

ua (Σ-contractSnd
(λ a →

inhProp→isContr
(ι (x , a))
(prop x))))

However, we have not yet shown that sum series ≡ n is an implied constraint; to
do that, we need to provide a proof of implied magicCondition (λ x → sum x ≡ n),
which is left as an exercise to the reader.

38

𝐂𝐡𝐚𝐩𝐭𝐞𝐫 5

𝐂𝐨𝐧𝐜𝐥𝐮𝐬𝐢𝐨𝐧

5.1 𝐑𝐞𝐬𝐮𝐥𝐭𝐬
We have explained the basics of MLTT, and how it differs from ZFC. Further,
we have described univalence as well as the benefits of it. We have introduced
Univalence in the form of an axiom for HoTT, and introduced the interval types for
CTT, which allows univalence to be proven as a theorem. Using these concepts, we
have constructed a new framework for representing a subset of MiniZinc models
— containing arrays, natural numbers, ranges as well as the 𝐚𝐥𝐥𝐝𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐭 global
constraint. The natural numbers and the ranges are defined using the built-in types
ℕ and Fin n respectively. The variables and constraints are fields of a record type
representing the model. The constraints are represented by propositions as types.

A solution to a model is an element of the model type. This element must have
all its fields assigned, thus providing values for the variables, and proofs that each
constraint is satisfied.

We have provided the basics required for automatic proof of constraints in a
solution, through the use of decidable types, by providing algorithms to decide
whether or not the constraint holds for given variables.

Through this framework we have defined two different models of the n-queens
problem. Further, we have proven that these models are equivalent, and thus equal.
Thus we can conclude that we can indeed use CTT to prove model equivalences,
at least for simple models.

We have also examined two common ways to alter models in order to reduce
search time; symmetry breaking and implied constraints, and concluded that each
of these concepts are able to be represented and generalized using this framework.

However, the proofs for this was at times complicated, meaning more work is
required in order to make this a practical approach, especially for more complex
problems.

39

5.2 𝐑𝐞𝐥𝐚𝐭𝐞𝐝 𝐖𝐨𝐫𝐤
The initial idea for the thesis stems from previous work dedicated to using HoTT
for proving equivalences of SQL queries. In their work, they extend a previously
existing formalisation of SQL’s semiring semantics, by extending it with unbound
summation and duplicate elimination[5].

They define the U-semiring as a tuple (𝓤, 0, 1, +, ×, ∥ ∙ ∥, not(∙), (Σ𝐷)𝐷 ∈ 𝒟)
where

• (𝓤, 0, 1, +, ×) forms a commutative semiring

• ∥ ∙ ∥ — referred to as squash — and not(∙) are unary operations satisfying
a number of properties.

• 𝒟 is a set of sets, where each 𝐷 ∈ 𝒟 is called a summation domain. For each
𝐷, the operation Σ𝐷 ∶ (𝐷 → 𝓤) → 𝓤 is called an unbounded summation
taking a function 𝑓 ∶ 𝐷 → 𝓤 and outputs a value in 𝓤. Further, this
summation is required to satisfy a number of axioms.

For the specific axioms and properties, refer to the paper[5]. They proceed to
define a translation algorithm, for converting a SQL query into an U-expression —
an expression using only the operations specified by the structure. These expres-
sions are rewritten to a standard form, at which point they can construct a solver
that can automatically prove whether or not queries are equivalent[5].

There is a very close connection between constraint satisfaction problems and
databases. In fact, given a constraint satisfaction problem one can create a database
encoding this problem, such that the database can act as a solver[10]. This simi-
larity hints at the possibility of using a formalisation similar to this for MiniZinc.

Methodologically, the approaches taken by this thesis differ from the SQL pa-
per. The SQL paper evaluated which rules and operations need to be available
for the correct formalisation of SQL queries through the use of previous work.
This enabled them to construct their abstractions and then convert from the SQL
language to their formal representation. Such groundwork had not been laid for
MiniZinc, which required the experimentation of which rules need to be satisfied,
and which operations need to be available, leaving little time for the formalisation
into an algebraic structure.

5.3 𝐅𝐮𝐭𝐮𝐫𝐞 𝐖𝐨𝐫𝐤
Being able to prove equivalences between models is a good start, however much
remains to be done in order for this to be an effective method. The main problem

40

with this framework is the amount of manual work required, and can be consid-
ered preparation for larger possible work. There are a couple of possible ways to
continue this research;

One possibility is to represent the models as elements of some containing
model type. This allows for the possibility of decidable equalities. However, as
the space of models — even for a simple subset of the MiniZinc language — is
undecidable[3], this is likely not possible.

Another possible source of improvement is the automatic reasoning and proof
search in Agda, or alternatively using a theorem prover that is more focused on
automatic reasoning, for instance Coq.

While the above suggestions both allow for simpler proofs and less manual
labour, the main goal is still to produce a complete formalisation of the MiniZinc
language. Using similar methodologies to the SQL paper[5], this should be the
main focus of future work. A possible future research proposal could be outlined
as

• Analyse which operations and rules need to be supported

• Construct an algebraic structure satisfying the above

• Formalise the conversion of MiniZinc code to elements of the structure

• Create a solver for the structure
This work will be a solid starting point, and can be used for analysing which op-
erations and rules need to be supported.

5.4 𝐀𝐧𝐚𝐥𝐲𝐬𝐢𝐬
This work has been a big source of learning to me. Both HoTT and constraint
programming were subjects I had only briefly looked at prior to writing this thesis.
Taking a course in constraint programming taught me all I needed to know for the
thesis, while the HoTT-book ([12]) served a valuable source of both methodology,
theory and references.

While the initial project plan was to summarize and possibly repeat the pre-
viously mentioned SQL-paper ([5]) but for constraint programming, it eventually
became clear that repeating it would be too much work, causing this thesis to in-
stead end up serving as preparation for future work.

The hardest part of the thesis was coming to terms with proof assistants. Be-
fore eventually settling on Agda and the cubical library, I also became acquainted
with Coq and the univalent foundations library. In retrospect, going with a proof
assistant with better support for automated proof search – such as Coq – might
have been a better choice.

41

𝐀𝐜𝐫𝐨𝐧𝐲𝐦𝐬

𝐂𝐓𝐓 Cubical Type Theory

𝐇𝐨𝐓𝐓 Homotopy Type Theory

𝐌𝐋𝐓𝐓 Martin-Löf Type Theory

𝐙𝐅𝐂 Zermelo-Frankel set theory

42

𝐁𝐢𝐛𝐥𝐢𝐨𝐠𝐫𝐚𝐩𝐡𝐲

[1] Andrea Vezzosi Anders Mörtberg. Cubical Agda. Agda Library. URL: https:
//github.com/Agda/cubical.

[2] Krzysztof R. Apt. Principles of Constraint Programming. Cambridge Uni-
versity Press, 2003.

[3] Christian Bessière et al. “Reasoning about constraint models”. In: PRICAI 2014.
Vol. 8862. LNCS. Springer, 2014, pp. 795–808.

[4] Marco Cadoli and Toni Mancini. “Using a theorem prover for reasoning
on constraint problems”. In: Applied Artificial Intelligence 21.4–5 (May
2007), pp. 383–404.

[5] Shumo Chu et al. “Axiomatic Foundations and Algorithms for Deciding
Semantic Equivalences of SQL Queries”. In: Proc. VLDB Endow. 11.11
(2018), pp. 1482–1495. DOI: 10 .14778/3236187 .3236200. URL: http :
//www.vldb.org/pvldb/vol11/p1482-chu.pdf.

[6] Cyril Cohen et al. “Cubical Type Theory: A Constructive Interpretation of
the Univalence Axiom”. In: FLAP 4.10 (2017), pp. 3127–3170. URL: http:
//collegepublications.co.uk/ifcolog/?00019.

[7] W. A. Howard. “Per Martin-Löf. Intuitionistic type theory. (Notes by Gio-
vanni Sambin of a series of lectures given in Padua, June 1980.) Studies in
proof theory. Bibliopolis, Naples1984, ix 91 pp.” In: Journal of Symbolic
Logic 51.4 (1986), pp. 1075–1076. DOI: 10.2307/2273925.

[8] Nicholas Nethercote et al. “MiniZinc: Towards a standard CP modelling
language”. In: CP 2007. Ed. by Christian Bessière. Vol. 4741. LNCS. The
MiniZinc toolchain is available at https://www.minizinc.org. Springer,
2007, pp. 529–543.

[9] Nicholas Nethercote et al. “MiniZinc: Towards a standard CP modelling
language”. In: In: Proc. of 13th International Conference on Principles and
Practice of Constraint Programming. Springer, 2007, pp. 529–543.

43

https://github.com/Agda/cubical
https://github.com/Agda/cubical
https://doi.org/10.14778/3236187.3236200
http://www.vldb.org/pvldb/vol11/p1482-chu.pdf
http://www.vldb.org/pvldb/vol11/p1482-chu.pdf
http://collegepublications.co.uk/ifcolog/?00019
http://collegepublications.co.uk/ifcolog/?00019
https://doi.org/10.2307/2273925
https://www.minizinc.org

[10] Justin K. Pearson and Peter Jeavons. A survey of tractable constraint sat-
isfaction problems. Tech. rep. CSD-TR-97-15. Computer Science Depart-
ment, Royal Holloway, University of London, UK, July 1997.

[11] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
3rd. USA: Prentice Hall Press, 2009. ISBN: 0136042597.

[12] The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics. Institute for Advanced Study: https://homotopytypetheory.
org/book, 2013.

[13] Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. “Cubical Agda: A
Dependently Typed Programming Language with Univalence and Higher
Inductive Types”. In: Proc. ACM Program. Lang. 3.ICFP (July 2019). DOI:
10.1145/3341691. URL: https://doi.org/10.1145/3341691.

44

https://homotopytypetheory.org/book
https://homotopytypetheory.org/book
https://doi.org/10.1145/3341691
https://doi.org/10.1145/3341691

