
Modeling systems via register machines
for the verification of weak memory models

Elli Anastasiadi 1,2 Samuel Grahn 1

1Department of Information Technology, Uppsala University, Sweden
firstname.lastname@it.uu.se

2Department of Computer Science, Aalborg University, Denmark
firstname.lastname@mail.dk

November 2024



Introduction Modeling Conclusion References

1 Introduction

2 Modeling

3 Conclusion

4 References

2 / 22



Introduction Modeling Conclusion References

Weak Memory Models

Why WMMs?

• Memory access is slow, so hardware designers have
implemented caches.

• Distributed systems that pass information about the system
using messages.

Writes are not immediately visible to all possible readers (threads,
systems, et.c.) Any such memory model is called weak. Notable
examples include TSO, RA, ARM.
Does a given implementation satisfy a given WMM?
Undecidable in general[1]
Simplify the model!

3 / 22



Introduction Modeling Conclusion References

Weak Memory Models

Why WMMs?

• Memory access is slow, so hardware designers have
implemented caches.

• Distributed systems that pass information about the system
using messages.

Writes are not immediately visible to all possible readers (threads,
systems, et.c.) Any such memory model is called weak. Notable
examples include TSO, RA, ARM.

Does a given implementation satisfy a given WMM?
Undecidable in general[1]
Simplify the model!

3 / 22



Introduction Modeling Conclusion References

Weak Memory Models

Why WMMs?

• Memory access is slow, so hardware designers have
implemented caches.

• Distributed systems that pass information about the system
using messages.

Writes are not immediately visible to all possible readers (threads,
systems, et.c.) Any such memory model is called weak. Notable
examples include TSO, RA, ARM.
Does a given implementation satisfy a given WMM?

Undecidable in general[1]
Simplify the model!

3 / 22



Introduction Modeling Conclusion References

Weak Memory Models

Why WMMs?

• Memory access is slow, so hardware designers have
implemented caches.

• Distributed systems that pass information about the system
using messages.

Writes are not immediately visible to all possible readers (threads,
systems, et.c.) Any such memory model is called weak. Notable
examples include TSO, RA, ARM.
Does a given implementation satisfy a given WMM?
Undecidable in general[1]

Simplify the model!

3 / 22



Introduction Modeling Conclusion References

Weak Memory Models

Why WMMs?

• Memory access is slow, so hardware designers have
implemented caches.

• Distributed systems that pass information about the system
using messages.

Writes are not immediately visible to all possible readers (threads,
systems, et.c.) Any such memory model is called weak. Notable
examples include TSO, RA, ARM.
Does a given implementation satisfy a given WMM?
Undecidable in general[1]
Simplify the model!

3 / 22



Introduction Modeling Conclusion References

Register Machines

Assume a set Θ of threads, a set V of variables, and a set Regs of
registers, the values of which range over some domain D.

Definition (Operation)

• (W, θ, x , a) – Thread θ writes to variable x , storing the value
in register a.

• (R, θ, x , a) – Thread θ reads from the variable x , and gets the
value stored in register a.

• a := b – The value of register b is copied into register a.

Definition (Register Machine)

A register machine M is a tuple ⟨Q, qinit,∆⟩, where Q is the
(finite) set of states, qinit ∈ Q is the initial state, and ∆ is the
finite set of transitions, where each t ∈ ∆ is of the form ⟨q, o, q′⟩
where q, q′ ∈ Q are states and o is an operation.

4 / 22



Introduction Modeling Conclusion References

Register Machines

Assume a set Θ of threads, a set V of variables, and a set Regs of
registers, the values of which range over some domain D.

Definition (Operation)

• (W, θ, x , a) – Thread θ writes to variable x , storing the value
in register a.

• (R, θ, x , a) – Thread θ reads from the variable x , and gets the
value stored in register a.

• a := b – The value of register b is copied into register a.

Definition (Register Machine)

A register machine M is a tuple ⟨Q, qinit,∆⟩, where Q is the
(finite) set of states, qinit ∈ Q is the initial state, and ∆ is the
finite set of transitions, where each t ∈ ∆ is of the form ⟨q, o, q′⟩
where q, q′ ∈ Q are states and o is an operation.

4 / 22



Introduction Modeling Conclusion References

Register Machines

Assume a set Θ of threads, a set V of variables, and a set Regs of
registers, the values of which range over some domain D.

Definition (Operation)

• (W, θ, x , a) – Thread θ writes to variable x , storing the value
in register a.

• (R, θ, x , a) – Thread θ reads from the variable x , and gets the
value stored in register a.

• a := b – The value of register b is copied into register a.

Definition (Register Machine)

A register machine M is a tuple ⟨Q, qinit,∆⟩, where Q is the
(finite) set of states, qinit ∈ Q is the initial state, and ∆ is the
finite set of transitions, where each t ∈ ∆ is of the form ⟨q, o, q′⟩
where q, q′ ∈ Q are states and o is an operation.

4 / 22



Introduction Modeling Conclusion References

Example: Instantaneous visibility

q

(R, θ, x , a) + (W, θ, x , a)

(R, ϕ, x , a) + (W, ϕ, x , a)

5 / 22



Introduction Modeling Conclusion References

Example: MSI Protocol

II

IMMI

SS

(W
, θ, x , a)(W

, ϕ
, x
, b
)

(W, ϕ, x , b)

(W, θ, x , a)

a
:=
b

(W
, ϕ, x , b)

b
:=
a

(W
, θ
, x
, a
)

(R, θ, x , a) + (W, θ, x , a)(R, ϕ, x , b) + (W, ϕ, x , b)

(R, θ, x , a)(R, ϕ, x , b)

6 / 22



Introduction Modeling Conclusion References

1 Introduction

2 Modeling

3 Conclusion

4 References

7 / 22



Introduction Modeling Conclusion References

Thread-local Memory

q

(R, θ, x , a) + (W, θ, x , a)

(R, ϕ, x , a) + (W, ϕ, x , a)

Writes are instantly visible to all threads!

8 / 22



Introduction Modeling Conclusion References

Thread-local Memory

q

(R, θ, x , a) + (W, θ, x , a)

(R, ϕ, x , a) + (W, ϕ, x , a)

Writes are instantly visible to all threads!

8 / 22



Introduction Modeling Conclusion References

Thread-local Memory

q

(R ∨W, θ, x , aθ) + (R ∨W, ϕ, x , aϕ)

aθ := aϕ + aϕ := aθ

Overwritten writes may return!

(W, θ, x , aθ) → aϕ := aθ → (R, ϕ, x , aϕ)

→ (W, ϕ, x , aϕ) → aϕ := aθ

→ (R, ϕ, x , aϕ)

Solution: Encode information about whether a written value has
been passed to shared memory.

9 / 22



Introduction Modeling Conclusion References

Thread-local Memory

q

(R ∨W, θ, x , aθ) + (R ∨W, ϕ, x , aϕ)

aθ := aϕ + aϕ := aθ

Overwritten writes may return!

(W, θ, x , aθ) → aϕ := aθ → (R, ϕ, x , aϕ)

→ (W, ϕ, x , aϕ) → aϕ := aθ

→ (R, ϕ, x , aϕ)

Solution: Encode information about whether a written value has
been passed to shared memory.

9 / 22



Introduction Modeling Conclusion References

Thread-local Memory

q

(R ∨W, θ, x , aθ) + (R ∨W, ϕ, x , aϕ)

aθ := aϕ + aϕ := aθ

Overwritten writes may return!

(W, θ, x , aθ) → aϕ := aθ → (R, ϕ, x , aϕ)

→ (W, ϕ, x , aϕ) → aϕ := aθ

→ (R, ϕ, x , aϕ)

Solution: Encode information about whether a written value has
been passed to shared memory.

9 / 22



Introduction Modeling Conclusion References

Thread-local Memory

q

(R ∨W, θ, x , aθ) + (R ∨W, ϕ, x , aϕ)

aθ := aϕ + aϕ := aθ

Overwritten writes may return!

(W, θ, x , aθ) → aϕ := aθ → (R, ϕ, x , aϕ)

→ (W, ϕ, x , aϕ) → aϕ := aθ

→ (R, ϕ, x , aϕ)

Solution: Encode information about whether a written value has
been passed to shared memory.

9 / 22



Introduction Modeling Conclusion References

Thread-local and Shared Memory

⊥,⊥

(R
, θ
, x
, a
)

(R, ϕ, x , a)

⊤,⊥
(W, θ, x

, aθ)

a :=
aθ

(R, θ, x , aθ) + (R, ϕ, x , a) + (W, θ, x , aθ)

⊥,⊤
(W, ϕ, x , aϕ)

a := aϕ

(R, θ, x , a) + (R, ϕ, x , aϕ) + (W, ϕ, x , aϕ)

⊤,⊤

(W, θ, x
, aθ)

a :=
aθ

(W, ϕ, x , aϕ)a := aϕ

(R ∨W, t, x , at)

10 / 22



Introduction Modeling Conclusion References

Thread-local and Shared Memory

⊥,⊥

(R
, θ
, x
, a
)

(R, ϕ, x , a)

⊤,⊥
(W, θ, x

, aθ)

a :=
aθ

(R, θ, x , aθ) + (R, ϕ, x , a) + (W, θ, x , aθ)

⊥,⊤
(W, ϕ, x , aϕ)

a := aϕ

(R, θ, x , a) + (R, ϕ, x , aϕ) + (W, ϕ, x , aϕ)

⊤,⊤

(W, θ, x
, aθ)

a :=
aθ

(W, ϕ, x , aϕ)a := aϕ

(R ∨W, t, x , at)

10 / 22



Introduction Modeling Conclusion References

Thread-local and Shared Memory

⊥,⊥

(R
, θ
, x
, a
)

(R, ϕ, x , a)

⊤,⊥
(W, θ, x

, aθ)

a :=
aθ

(R, θ, x , aθ) + (R, ϕ, x , a) + (W, θ, x , aθ)

⊥,⊤
(W, ϕ, x , aϕ)

a := aϕ

(R, θ, x , a) + (R, ϕ, x , aϕ) + (W, ϕ, x , aϕ)

⊤,⊤

(W, θ, x
, aθ)

a :=
aθ

(W, ϕ, x , aϕ)a := aϕ

(R ∨W, t, x , at)

10 / 22



Introduction Modeling Conclusion References

Thread-local and Shared Memory

⊥,⊥

(R
, θ
, x
, a
)

(R, ϕ, x , a)

⊤,⊥
(W, θ, x

, aθ)

a :=
aθ

(R, θ, x , aθ) + (R, ϕ, x , a) + (W, θ, x , aθ)

⊥,⊤
(W, ϕ, x , aϕ)

a := aϕ

(R, θ, x , a) + (R, ϕ, x , aϕ) + (W, ϕ, x , aϕ)

⊤,⊤

(W, θ, x
, aθ)

a :=
aθ

(W, ϕ, x , aϕ)a := aϕ

(R ∨W, t, x , at)

10 / 22



Introduction Modeling Conclusion References

Thread-local and Shared Memory

⊥,⊥

(R
, θ
, x
, a
)

(R, ϕ, x , a)

⊤,⊥
(W, θ, x

, aθ)

a :=
aθ

(R, θ, x , aθ) + (R, ϕ, x , a) + (W, θ, x , aθ)

⊥,⊤
(W, ϕ, x , aϕ)

a := aϕ

(R, θ, x , a) + (R, ϕ, x , aϕ) + (W, ϕ, x , aϕ)

⊤,⊤

(W, θ, x
, aθ)

a :=
aθ

(W, ϕ, x , aϕ)a := aϕ

(R ∨W, t, x , at)

10 / 22



Introduction Modeling Conclusion References

Thread-local and Shared Memory

⊥,⊥

(R
, θ
, x
, a
)

(R, ϕ, x , a)

⊤,⊥
(W, θ, x

, aθ)

a :=
aθ

(R, θ, x , aθ) + (R, ϕ, x , a) + (W, θ, x , aθ)

⊥,⊤
(W, ϕ, x , aϕ)

a := aϕ

(R, θ, x , a) + (R, ϕ, x , aϕ) + (W, ϕ, x , aϕ)

⊤,⊤

(W, θ, x
, aθ)

a :=
aθ

(W, ϕ, x , aϕ)a := aϕ

(R ∨W, t, x , at)

10 / 22



Introduction Modeling Conclusion References

Buffers

When the effect of some action of a system is delayed for some
participants, we can (sometimes) model it using buffers.

• Writes that are not immediately visible to all threads
(e.g. TSO write- or load buffer semantics)

• Delays due to traveling time in distributed systems
(e.g. message queues)

11 / 22



Introduction Modeling Conclusion References

Buffers

When the effect of some action of a system is delayed for some
participants, we can (sometimes) model it using buffers.

• Writes that are not immediately visible to all threads
(e.g. TSO write- or load buffer semantics)

• Delays due to traveling time in distributed systems
(e.g. message queues)

11 / 22



Introduction Modeling Conclusion References

Buffers

When the effect of some action of a system is delayed for some
participants, we can (sometimes) model it using buffers.

• Writes that are not immediately visible to all threads
(e.g. TSO write- or load buffer semantics)

• Delays due to traveling time in distributed systems
(e.g. message queues)

11 / 22



Introduction Modeling Conclusion References

TSO-style Store Buffers

x = 0
y = 0

θ

ϕ

x = 1

y = 1

x = 2x = 2
x = 1
y = 0

Write: Append to own buffer
Read: Rightmost occurrence in own buffer, otherwise memory

12 / 22



Introduction Modeling Conclusion References

TSO-style Store Buffers

x = 0
y = 0

θ

ϕ

x = 1

y = 1

x = 2x = 2
x = 1
y = 0

Write: Append to own buffer
Read: Rightmost occurrence in own buffer, otherwise memory

12 / 22



Introduction Modeling Conclusion References

TSO-style Store Buffers

x = 0
y = 0

θ

ϕ

x = 1

y = 1

x = 2x = 2
x = 1
y = 0

Write: Append to own buffer
Read: Rightmost occurrence in own buffer, otherwise memory

12 / 22



Introduction Modeling Conclusion References

TSO-style Store Buffers

x = 0
y = 0

θ

ϕ

x = 1

y = 1

x = 2

x = 2
x = 1
y = 0

Write: Append to own buffer
Read: Rightmost occurrence in own buffer, otherwise memory

12 / 22



Introduction Modeling Conclusion References

TSO-style Store Buffers

x = 0
y = 0

θ

ϕ

x = 1

y = 1

x = 2x = 2
x = 1
y = 0

Write: Append to own buffer
Read: Rightmost occurrence in own buffer, otherwise memory

12 / 22



Introduction Modeling Conclusion References

TSO-style Store Buffers

Encoding TSO-style store buffers buffers as register machines

• Variables: x , y , z , . . .

• Buffers: Bθ,Bϕ, . . .

• Registers: xmem, ymem, . . . , B
θ
1 , . . . ,B

θ
n ,B

ϕ
1 , . . .

Bθ = ϵ,Bϕ = ϵ

(R, t, x , xmem)

ϵ, ϵ

(R, t, x , xmem)

=⇒

13 / 22



Introduction Modeling Conclusion References

TSO-style Store Buffers

Encoding TSO-style store buffers buffers as register machines

• Variables: x , y , z , . . .

• Buffers: Bθ,Bϕ, . . .

• Registers: xmem, ymem, . . . , B
θ
1 , . . . ,B

θ
n ,B

ϕ
1 , . . .

Bθ = ϵ,Bϕ = ϵ

(R, t, x , xmem)

ϵ, ϵ

(R, t, x , xmem)

=⇒

13 / 22



Introduction Modeling Conclusion References

TSO-style Store Buffers

Encoding TSO-style store buffers buffers as register machines

• Variables: x , y , z , . . .

• Buffers: Bθ,Bϕ, . . .

• Registers: xmem, ymem, . . . , B
θ
1 , . . . ,B

θ
n ,B

ϕ
1 , . . .

Bθ = ϵ,Bϕ = ϵ

(R, t, x , xmem)

ϵ, ϵ

(R, t, x , xmem)

=⇒

13 / 22



Introduction Modeling Conclusion References

TSO-style Store Buffers

Encoding TSO-style store buffers buffers as register machines

• Variables: x , y , z , . . .

• Buffers: Bθ,Bϕ, . . .

• Registers: xmem, ymem, . . . , B
θ
1 , . . . ,B

θ
n ,B

ϕ
1 , . . .

Bθ = ϵ,Bϕ = ϵ

(R, t, x , xmem)

ϵ, ϵ

(R, t, x , xmem)

=⇒

13 / 22



Introduction Modeling Conclusion References

TSO-style Store Buffers

Encoding TSO-style store buffers buffers as register machines

• Variables: x , y , z , . . .

• Buffers: Bθ,Bϕ, . . .

• Registers: xmem, ymem, . . . , B
θ
1 , . . . ,B

θ
n ,B

ϕ
1 , . . .

Bθ = ϵ,Bϕ = ϵ

(R, t, x , xmem)

ϵ, ϵ

(R, t, x , xmem)

=⇒

13 / 22



Introduction Modeling Conclusion References

TSO-style Store Buffers

Encoding TSO-style store buffers buffers as register machines

• Variables: x , y , z , . . .

• Buffers: Bθ,Bϕ, . . .

• Registers: xmem, ymem, . . . , B
θ
1 , . . . ,B

θ
n ,B

ϕ
1 , . . .

Bθ = ϵ,Bϕ = ϵ

(R, t, x , xmem)

ϵ, ϵ

(R, t, x , xmem)

=⇒

13 / 22



Introduction Modeling Conclusion References

TSO-style Store Buffers

⊥,⊥

⊤,⊥

⊥,⊤

⊤,⊤

(R
, θ
, x
, a
)

(R, ϕ, x , a)

(W, θ, x
, aθ)

a :=
aθ

(W, ϕ, x , aϕ)

a := aϕ

(R, θ, x , aθ) + (R, ϕ, x , a) + (W, θ, x , aθ)

(R, θ, x , a) + (R, ϕ, x , aϕ) + (W, ϕ, x , aϕ)

(W, θ, x
, aθ)

a :=
aθ

(W, ϕ, x , aϕ)a := aϕ

(R ∨W, t, x , at)

14 / 22



Introduction Modeling Conclusion References

TSO-style Store Buffers

ϵ, ϵ

x , ϵ

ϵ, x

x , x

(R
, θ
, x
, a
)

(R, ϕ, x , a)

(W, θ, x
, aθ)

a :=
aθ

(W, ϕ, x , aϕ)

a := aϕ

(R, θ, x , aθ) + (R, ϕ, x , a)

(R, θ, x , a) + (R, ϕ, x , aϕ)

(W, θ, x
, aθ)

a :=
aθ

(W, ϕ, x , aϕ)a := aϕ

(R, t, x , at)

15 / 22



Introduction Modeling Conclusion References

TSO-style Store Buffers: Read/Write

Writing and reading

xy , y

(
R, θ, x ,Bθ

1

)
+(

R, θ, y ,Bθ
2

)
+(

R, ϕ, y ,Bϕ
1

)
+

(R, ϕ, x , xmem)

xyx , y
(
W, θ, x ,Bθ

3

)

xy , yx

(
W
, ϕ
, x
,B
ϕ
2

)

16 / 22



Introduction Modeling Conclusion References

TSO-style Store Buffers: Read/Write

Writing and reading

xy , y

(
R, θ, x ,Bθ

1

)
+(

R, θ, y ,Bθ
2

)
+(

R, ϕ, y ,Bϕ
1

)
+

(R, ϕ, x , xmem)

xyx , y
(
W, θ, x ,Bθ

3

)

xy , yx

(
W
, ϕ
, x
,B
ϕ
2

)

16 / 22



Introduction Modeling Conclusion References

TSO-style Store Buffers: Read/Write

Writing and reading

xy , y

(
R, θ, x ,Bθ

1

)
+(

R, θ, y ,Bθ
2

)
+(

R, ϕ, y ,Bϕ
1

)
+

(R, ϕ, x , xmem)

xyx , y
(
W, θ, x ,Bθ

3

)

xy , yx

(
W
, ϕ
, x
,B
ϕ
2

)

16 / 22



Introduction Modeling Conclusion References

TSO-style Store Buffers: Read/Write

Writing and reading

xy , y

(
R, θ, x ,Bθ

1

)
+(

R, θ, y ,Bθ
2

)
+(

R, ϕ, y ,Bϕ
1

)
+

(R, ϕ, x , xmem)

xyx , y
(
W, θ, x ,Bθ

3

)

xy , yx

(
W
, ϕ
, x
,B
ϕ
2

)

16 / 22



Introduction Modeling Conclusion References

TSO-style Store Buffers: Handling message

xy , y

q1xmem := Bθ
1

q2

Bθ
1 := Bθ

2

qn

Bθ
i := Bθ

i+1

y , y Bθ
n−1 := Bθ

n

17 / 22



Introduction Modeling Conclusion References

TSO-style Store Buffers: Handling message

xy , y q1xmem := Bθ
1

q2

Bθ
1 := Bθ

2

qn

Bθ
i := Bθ

i+1

y , y Bθ
n−1 := Bθ

n

17 / 22



Introduction Modeling Conclusion References

TSO-style Store Buffers: Handling message

xy , y q1xmem := Bθ
1

q2

Bθ
1 := Bθ

2

qn

Bθ
i := Bθ

i+1

y , y Bθ
n−1 := Bθ

n

17 / 22



Introduction Modeling Conclusion References

TSO-style Store Buffers: Handling message

xy , y q1xmem := Bθ
1

q2

Bθ
1 := Bθ

2

qn

Bθ
i := Bθ

i+1

y , y Bθ
n−1 := Bθ

n

17 / 22



Introduction Modeling Conclusion References

TSO-style Store Buffers: Handling message

xy , y q1xmem := Bθ
1

q2

Bθ
1 := Bθ

2

qn

Bθ
i := Bθ

i+1

y , y Bθ
n−1 := Bθ

n

17 / 22



Introduction Modeling Conclusion References

Fences

A fence is an instruction in which each thread waits for the buffers
to be empty before doing anything. Assume a fence from a state q
to a state q′.

• If the buffers are empty in q, we only have the
“nondeterministic copies” available from q.

• Otherwise, we have a dummy transition q
a:=a−→ q′.

18 / 22



Introduction Modeling Conclusion References

Fences

A fence is an instruction in which each thread waits for the buffers
to be empty before doing anything. Assume a fence from a state q
to a state q′.

• If the buffers are empty in q, we only have the
“nondeterministic copies” available from q.

• Otherwise, we have a dummy transition q
a:=a−→ q′.

18 / 22



Introduction Modeling Conclusion References

Fences

A fence is an instruction in which each thread waits for the buffers
to be empty before doing anything. Assume a fence from a state q
to a state q′.

• If the buffers are empty in q, we only have the
“nondeterministic copies” available from q.

• Otherwise, we have a dummy transition q
a:=a−→ q′.

18 / 22



Introduction Modeling Conclusion References

1 Introduction

2 Modeling

3 Conclusion

4 References

19 / 22



Introduction Modeling Conclusion References

Conclusion

We model buffers as part of the state. Two weaknesses:

1 Requires bounded buffer sizes and thread counts – usually the
case in real systems!

2 Exponential growth (state explosion) – not ideal, but OK.

However: We have decidability for more memory models, and we
can still model useful systems!

20 / 22



Introduction Modeling Conclusion References

Conclusion

We model buffers as part of the state. Two weaknesses:

1 Requires bounded buffer sizes and thread counts – usually the
case in real systems!

2 Exponential growth (state explosion) – not ideal, but OK.

However: We have decidability for more memory models, and we
can still model useful systems!

20 / 22



Introduction Modeling Conclusion References

Conclusion

We model buffers as part of the state. Two weaknesses:

1 Requires bounded buffer sizes and thread counts – usually the
case in real systems!

2 Exponential growth (state explosion) – not ideal, but OK.

However: We have decidability for more memory models, and we
can still model useful systems!

20 / 22



Introduction Modeling Conclusion References

Conclusion

We model buffers as part of the state. Two weaknesses:

1 Requires bounded buffer sizes and thread counts – usually the
case in real systems!

2 Exponential growth (state explosion) – not ideal, but OK.

However: We have decidability for more memory models, and we
can still model useful systems!

20 / 22



Introduction Modeling Conclusion References

1 Introduction

2 Modeling

3 Conclusion

4 References

21 / 22



Introduction Modeling Conclusion References

References

[1] Ahmed Bouajjani, Constantin Enea, Rachid Guerraoui, and Jad
Hamza.
On verifying causal consistency.
In Giuseppe Castagna and Andrew D. Gordon, editors,
Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL 2017, Paris,
France, January 18-20, 2017, pages 626–638. ACM, 2017.

22 / 22


	Introduction
	Modeling
	Conclusion
	References

